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Abstract

A new global measure of distortion for coordination
polyhedra is proposed, based on a comparison of the
ratios Vs(circumscribed sphere)/Vp(polyhedron) calcu-
lated, respectively, for the real and ideal polyhedra of
the same number of coordinated atoms which have the
same circumscribed sphere. This formula can be
simpli®ed to � (%) = 100[Vi(ideal) ÿ Vr(real)]/Vi, where
Vi and Vr are the volumes of the above-de®ned
polyhedra. The global distortion can be combined with
other polyhedral characteristics, e.g. with the eccentri-
city of the central atom in the polyhedron or with the
degree of sphericity of the coordination sphere [BalicÂ
ZÏ unicÂ & Makovicky (1996). Acta Cryst. B52, 78±81].
Vs/Vp ratios are given for a number of ideal polyhedra,
including several types of trigonal coordination prisms,
with the aim of facilitating the distortion calculations.
The application examples included in the paper are:
complex sul®des based on PbS and SnS archetypes,
coordination polyhedra of large cations in feldspars, a
phase transformation in a monoclinic amphibole and the
subdivision of structures isopointal to ilmenite.

1. Introduction

Coordination polyhedra of ligand atoms around a
central atom are one of the fundamental notions of
crystal chemistry. Although the concept is straightfor-
ward, its application to real structures is fraught with
practical problems connected with the departures of the
coordination polyhedra from regularity.

The number of coordinated atoms (CN) is obvious for
regular/ideal coordination polyhedra; a number of
weighting schemes or cut-off procedures were devised
for dealing with more distant ligands in deformed
polyhedra (e.g. Carter, 1978).

Whenever possible, the shape of a polyhedron is
compared with that of an ideal or regular one (e.g.
Lueken et al., 1987). Departures from ideality are mostly
treated in the literature by procedures speci®c for a
given polyhedron and problem [e.g. mean quadratic
elongation (Robinson et al., 1971), measures of octahe-
dral ¯attening and deformation in phyllosilicates
(Toraya, 1981; Weiss et al., 1985) and symmetry-defor-
mation coordinates (Klebe & Weber, 1994)].

It is impossible to devise a completely model-free
measure of polyhedral distortion. Ideal polyhedra and
coordinations are just intermediate or end stages for a
continuous spectrum of coordination polyhedra that
transform into one another. The measure of distortion
will depend on the ideal polyhedron we select as
representative for a given situation.

The problem of de®nition for polyhedral distortion
can be split into two components: (a) regularity of
coordination of the central atom (range and scatter of
interatomic distances and subtended angles) and (b)
regularity of the ligand distribution in the polyhedron
(coordination sphere).

In the previous contribution (BalicÂ ZÏ unicÂ &
Makovicky, 1996) we de®ned a universal procedure to
evaluate the (a) and (b) components of polyhedral
distortion in a scheme dependent on the de®nition of
CN, but not on polyhedral shape. The procedure is based
on least-squares ®tting of a circumscribed sphere to the
polyhedron. It consists of ®nding a centroid of the
polyhedron, calculating the distance of the central atom
from the centroid and obtaining a sphericity measure for
the polyhedron. The sphericity of the coordination
polyhedron has been de®ned as (1ÿ�r=r), where r is the
radius of the circumscribed sphere and �r is the standard
deviation of the distances from the centroid to the
ligands.

In the present contribution we propose an extension
of this scheme in order to express the departure of a
polyhedron from its ideal shape. The measure of this
departure is a single parameter which can be compared
with those of other polyhedra in the same structure
(even if they differ in CN) or in a structure family, or
over a range of structure types. The proposed measure
of distortion concerns the (b) component of polyhedral
distortion, i.e. the regularity of distribution of the ligand
atoms irrespective of the position of the central atom in
the polyhedron.

2. Calculation procedures

2.1. Principles

For every polyhedron type with a given number and
topology of faces a polyhedron with the maximum
possible volume can be regarded as the ideal one.



Evidently, all platonic polyhedra are ideal or maximum-
volume polyhedra for their types. The ratio of the
volume of the circumscribed sphere (Vs) to that of the
polyhedron (Vp) attains a characteristic value for each
ideal/regular polyhedron. It will change with any
distortion of the polyhedron from the ideal shape. It will
increase with this distortion as long as the centroid±
ligand distances and the number and topology of poly-
hedral faces are preserved. Comparison of the sphere/
polyhedron volume ratios (Vs/Vp) for the real and ideal
cases (using the sphere volume Vs derived from the real
polyhedron) is a suitable global measure of polyhedral
distortion of type (b).

In those cases when polyhedral deformation breaks
up n-sided (n� 4) faces into new sets of triangular faces,
this ratio can decrease. The latter cases should therefore
be treated as deformed versions of polyhedra with
higher numbers of faces. Polyhedra limited by triangular
faces (tetrahedra, octahedra, . . . ) do not experience this
kind of distortion. The Vs/Vp ratio can also decrease
when the selected ideal polyhedron does not quite
correspond to the observed situation as, for example, the
capped trigonal coordination prisms in the lillianite
homologues described below. The former decrease will
be accompanied by increased sphericity of the
polyhedron (BalicÂ ZÏ unicÂ & Makovicky, 1996), the latter
decrease may be paralleled by a decrease in sphericity.

The ®rst stages of the procedure, circumscription of a
sphere to the standard coordination polyhedron by
least-squares ®tting to all (prede®ned) ligands, deter-
mination of its centre, radius and its standard deviation,
have been described by BalicÂ ZÏ unicÂ & Makovicky
(1996). Polyhedral volumes can be calculated by
dividing the polyhedron into general tetrahedra and
summing up their volumes (BalicÂ ZÏ unicÂ & VickovicÂ,
1996).

The sphere/polyhedron volume ratios for the real and
the corresponding ideal polyhedron can be compared by
means of suitable graphs (Figs. 1±3) or by de®ning a
distortion percentage (�) as a volume discrepancy
between a coordination polyhedron and the corre-
sponding ideal one.

If Vi denotes the volume of the ideal polyhedron and
Vr that of the real polyhedron with the same circum-
scribed sphere radius, the volume discrepancy can be
calculated as

� �%� � ��Vs=Vr� ÿ �Vs=Vi��=�Vs=Vr� � 100:

This expression can be simpli®ed to

� �%� � �Vi ÿ Vr�=Vi � 100:

The volume discrepancy can be used as a quantitative
measure of polyhedral distortion (or of the departure
from the chosen model).

2.2. Selected ideal sphere/polyhedron volume ratios

The volume ratios Vs(circumscribed sphere)/
Vp(polyhedron) for regular polyhedra in Table 1 are
based on geometric data by Netz & Rast (1986). r
denotes the centre-to-vertex distance for a regular/ideal
polyhedron; a is its edge length. The circumscribed
sphere shares the radius r with the polyhedron. Similar
ratios for other ideal coordination polyhedra are derived
in the following paragraphs and summarized in Table 2.

Two distinct limiting coordinations CN = 5 are
important for the crystal chemistry of Cu with organic
ligands; they are interconnected by a spectrum of tran-
sitional ®vefold coordinations. For these cases, a denotes
the edge of the base and l the inclined edge of the
coordination pyramid. The ®rst limiting coordination is
a square pyramid with ®ve equal bonds r and a Cu atom
in the square base (a half-octahedron) (Table 2). The
volume of this coordination polyhedron increases when
the distance of the vertex from the base increases,
drawing the Cu atom into the volume of the pyramid. It
reaches a maximum when the height of the pyramid
h � r� � is equal to (4/3)r (Table 2). The other limiting
coordination CN = 5 is a trigonal bipyramid with all
centrum-to-ligand distances equal to r (Table 2).

A trigonal coordination prism, without or with addi-
tional ligands above its rectangular faces (`one- to three-
capped prism') is an important coordination polyhedron
in inorganic compounds and alloys. Four distinct `ideal'
cases will be examined:

(i) An Archimedean trigonal prism with all nine edge
lengths equal to a (Table 2). When this prism is capped
on 1±3 rectangular faces, with the centre-to-additional
ligand (vertex) distance equal to r,

Vn-capped
a � Va � �4=7�nr3�1ÿ 1=71=2�:

Vs/V
n-capped
a is equal to 3.1557, 2.4892 and 2.0551 for n =

1, 2 and 3.
(ii) A trigonal prism with a maximum volume for a

given centre-to-vertex distance r (Table 2). When this
prism is capped with the same caps as the prism of type
(i) (the prism centre-to-cap vertex distance is r), its
volume is

Vn-capped
max � Vmax � �2�2�1=2=3�3�1=2�nr3�1ÿ 1=61=2�;

where n = 1±3. For these n values, Vs/V
n-capped
max is equal to

3.1683, 2.5476 and 2.1303 for n = 1, 2 and 3, respectively.
These capped cases have total volumes smaller than the
following case in which the maximum global volume is
calculated for the prism including its n caps.

(iii) Parameters for the capped prism with the
maximum global volume can be obtained from the
general formula for the volume of an n-capped trigonal
prism with h and r decoupled. In this case the length a of
the edge of the prism base is

�3r2 ÿ �3=4�h2�1=2
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and the global volume is

V � �3�3�1=2=4��hr2 ÿ h3=4� � �nh�=31=2�r�r2 ÿ h2=4�1=2

ÿ r2=2� h2=8�
� �h=31=2�f��9ÿ 2n�=4��r2 ÿ h2=4� � nr�r2 ÿ h2=4�1=2g:

Numerical evaluation of this equation shows that the
maximum global volume of the n-capped trigonal prism
occurs at: (a) h = 1.2459r for a monocapped prism (Vs/Vp

= 3.1424); (b) h = 1.3129r for a bicapped prism (Vs/Vp =
2.4891); (c) h = 1.3625r for a tricapped prism (Vs/Vp =
2.0496). For all these cases, the volume changes which
take place with the changing h/r ratio are minor in the
broad h/r regions about the value yielding the maximum
volumes for capped prisms. Therefore, the incentives to
achieve the above-quoted ideal h/r ratios are weak. The
calculated Vs/Vp ratios are fairly close to those for
an n-capped trigonal prism with all prism edges
equal (i.e. a = h), the above case (i), for which h =
1.3093r.

(iv) A monocapped trigonal prism with the `central'
atom in the centre of the square face, which also is a base
for the single cap. In order to distinguish it from the
above cases with a centrally situated cation, it will be
termed `a split octahedron' (Edenharter, 1976). In this
case, r is the distance from this atom to all prism and cap
vertices; a = r1/2 is the prism height and also the length of
all cap edges. The free horizontal edges a0 of the prism
have length equal to r. Comparing the data in Table 2
with those for the preceding cases we can see that the
`split octahedron' has a larger relative polyhedral
volume than the family of monocapped trigonal prisms,
cases (i)±(iii). This con®guration is approximated in the
accommodation of active lone electron pairs in the
structure.

An alternative sevenfold coordination has the shape
of a pentagonal bipyramid with the centre-to-vertex
distance r, for which the `base cross section' has the area
S = 2.3776r2 (Table 2).

Data for a regular coordination cube (CN = 8) are in
Table 1. The polyhedron volume for a square antiprism
(CN = 8) with the horizontal edges a and height h is

V � ��2� 21=2�=3�a2h � f�4� 2�2�1=2�=3ga2�r2 ÿ a2=2�1=2:

Two limiting situations for this coordination, the
Archimedean antiprism with all edge lengths equal to a

and the antiprism with maximum volume, are speci®ed
in Table 2.

For atoms with CN = 12 four ideal polyhedra, the
cuboctahedron, anticuboctahedron, icosahedron and
maximum volume hexagonal prism, occur in competi-
tion. Parameters for the cuboctahedron and icosahedron
are in Table 1; those for anticuboctahedron (in the h.c.p.
arrays) coincide with the former. A hexagonal prism
with a given centre-to-vertex distance r, horizontal edges
a and prism height h has volume equal to

3

2
�3�1=2�hr2 ÿ h3=4�:

This volume becomes the tabulated maximum (Table 2)
for h = 2(3)1/2r/3. The results for an irregular 12-fold
coordination may be compared with the three ideal Vs/
Vp values and conclusions on its proximity to (or
deformation of) any of these drawn.

3. Applications

The proposed global measure of polyhedral distortion
can be used to quantify:

(a) Deviations of coordination polyhedra from ideal
shapes.

(b) Degree and types (branches) of isotypy/home-
otypy (Lima-de-Faria et al., 1990) by comparison of
distortion characteristics of analogous polyhedra in the
structures of one isotypic/homeotypic family.

(c) Quanti®cation of departures from a structural
archetype (Makovicky, 1989).

(d) Measure of distortion of complicated structures
(e.g. tectosilicates) from their aristotype (Megaw, 1973).

(e) Con®gurational driving mechanisms for phase
transformations.

Examples of these applications follow; each of them
illustrates several of the above points.

4. Examples

Sartorite homologues Pb4Nÿ8ÿ2xAs8+xAgxS4N+4 are a
series of Pb±As sul®des with zigzag walls composed of
columns of tricapped trigonal coordination prisms of Pb.
The walls alternate with variously thick slabs composed
of monocapped `lying trigonal prisms' (`split octahedra')
of As and Pb; these slabs are based on an SnS archetype.

Table 1. Geometric characteristics of regular polyhedra (Vp) with a circumscribed sphere (Vs)

Regular polyhedron CN Edge length a Polyhedral volume Vs/Vp

Tetrahedron 4 4r=61=2 8r3=9�3�1=2 9�=2�3�1=2 � 2:5981� = 8.1621
Octahedron 6 r�2�1=2 �4=3�r3 � � 3:1416
Cube 8 2r=31=2 8�3�1=2

r3=9 �31=2=2�� � 0:8660� = 2.7206
Icosahedron 12 4r=�2�5� 51=2��1=2 = 1.05146r 2.5362r3 0.5257� = 1.6516

Note: The centre-to-vertex distance r is the radius of the sphere.
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The closely related Tl±As±Sb sul®des contain columns
of alternating Tl and Sb prisms rather than tricapped Pb
prisms and Sb partly or fully replaces As in the `SnS-
like' slabs. At an advanced stage of the latter substitu-
tion these structures move from the SnS to the PbS
archetype in the slabs. In this work we compared the
coordination polyhedra of baumhauerite Pb6As8S18

(Engel & Nowacki, 1969), a typical member of the
sartorite series, with those of pierrotite Tl(Sb,As)5S8

(Engel et al., 1983) and parapierrotite TlSb5S8 (Engel,
1980).

Tricapped Pb prisms in the structure of the typical
sartorite homologue follow closely the ideal Vs/Vp ratio
for the trigonal prisms of type (i); � = 0.0±1.6% (Fig. 1).
Those of Tl in pierrotite and parapierrotite are more
deformed (� = 3.0±6.9%). Sb in these prisms exhibits
moderate polyhedral distortion in the Tl±Sb±As sul®de
pierrotite (� = 5.2±6.9%), but it displays a very
pronounced polyhedral distortion in the Tl±Sb member
parapierrotite (� = 26.8±27.5%). This is connected with
a highly asymmetric position of Sb in the ¯attened
polyhedron; also the disposition of Tl and Sb prisms
changes between pierrotite and parapierrotite.

`Lying monocapped prisms' of As, and of associated
Pb and Sb in baumhauerite and pierrotite follow the
maximum-volume ratio in Fig. 1. Those of Sb in the Tl±
Sb sul®de parapierrotite preserve the polyhedral volume
of prisms in the As±Sb members, whereas the volume of
a sphere circumscribed around them increases by
�36%; the resulting deformation measure � for CN = 7
is about 22%. It is a measure of change from a SnS-like to
a PbS-like con®guration, which takes place with the full
occupation of SnS-like layers by Sb.

Lillianite homologues (for most cations
M2�

Nÿ1M3�
2 SN�2) consist of variously wide PbS-like slabs

with CN = 6, cut out and twinned on (311)PbS, creating
intervening walls of bicapped trigonal coordination

prisms (CN = 8) on their boundaries. Both types of
coordination polyhedra can be occupied by a spectrum
of cations. Fig. 2 shows the generally low degree of
polyhedral distortion in this series. The bicapped
trigonal prisms follow the maximum-volume Vs/Vp ratio
[case (iii)] and the same is true for the octahedra in the
slabs. In lillianite homologues with Pb in trigonal prisms,
the Vs/Vp ratio decreases slightly in comparison to the
maximum-volume prism (� = ÿ3.3%), because these
prisms deviate from the ideal de®nition ± the capping
ligands are much more distant than those forming the
trigonal prism. In the structure of the lillianite homo-
logue TlSb3S5 (GostojicÂ et al., 1982), the combined
distortions of the bicapped trigonal coordination prisms
of Tl result in � = 0.2%. For both the Pb prisms and the
Tl prisms the sphericity values (BalicÂ ZÏ unicÂ &
Makovicky, 1996) are reduced substantially, to 94%. The
coordination octahedra of Sb are very distorted in
TlSb3S5 (� = 12.8±19.8%). A decrease in the octahedron
volume with increasing distortion is caused by a side-
ways movement of the sixth ligand rather than its shift
along the axis of the elongated octahedron.

The degree of polyhedral distortion in the sartorite
and lillianite families is a direct function of lone-elec-
tron-pair activity of cations in the SnS-like or PbS-like
slabs. The former with their `split-octahedral' coordi-
nations (CN = 7) are ®t to accommodate the very active
(i.e. volume demanding) lone electron pairs of As; the
latter, with little deformed octahedral coordinations
(CN = 6) exist because of the low electron-pair activity
of Bi. Introduction of a cation with intermediate lone-
electron-pair activity into either of these two structure
types leads to coordination states intermediate between

Fig. 2. The Vs/Vp ratios for cations in typical undistorted and distorted
lillianite homologues (unit-cell twinned cation-®lled c.c.p. arrays).
Correlation lines show ratios for ideal polyhedra. References for the
structures: lillianite (Takagi & Takeuchi, 1972), heyrovskyite
(Takeuchi & Takagi, 1974), TlSb3S5 (GostojicÂ et al., 1982), CaMn2O4

(Couffon et al., 1964; Lepicard & Protas, 1966), CaTi2O4 (Bertaut &
Blum, 1956), NdYbS3 (CarreÂ & Laruelle, 1974), Y5S7 (Adolphe,
1965).

Fig. 1. Ratio of the volume of a least-squares circumscribed sphere to
the volume of a coordination polyhedron for cations in the sul®des
of the Pb±As sartorite homologous series and related Tl±As±Sb
sul®des. Ratios for ideal polyhedra are indicated by correlation
lines. p: pierrotite, pp: parapierrotite. Structure references are given
in the text.
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those above and the observed polyhedral/structural
distortions.

The coordination polyhedra of cavity cations in feld-
spars M�x M2�

1ÿxSi2�xAl2ÿxO8 show Vs/Vp ratios smaller
than the predicted Vs/Vp ratio in the idealized model of
the feldspar structure derived by Hyde & Andersson
(1989). The relation between polyhedral volumes and
the circumscribed sphere volumes departs from a linear
one and converges with the increasing radius of the large
cation towards the value for the idealized model for
both CN = 9 and CN = 10 (Fig. 3).

The coordination polyhedron of a large cation ®lling
the aluminosilicate framework of feldspars is hard to
relate to any regular polyhedron. For CN = 9 the Na±Ca
feldspars show the worst values of sphericity, augmented
Vs/Vp ratios and largest eccentricity (Fig. 4), because of
the deformations connected with small cation size. All
these characteristics are best for intermediate cation
sizes (Sr±Ba), suggesting the most regular distribution of
anions around the large cation site. In monoclinic feld-
spars for CN = 9 the coordination polyhedron contains
two four-cornered faces, in triclinic feldspars only
triangular faces. Still, this difference does not suf®ce to
lower the Vs/Vp ratio of the triclinic Na±Ca feldspars
below that of adjacent monoclinic feldspars of Sr and
Ba.

The rise in sphericity slows down for the largest
cations; their eccentricity rises moderately, whereas their
Vs/Vp ratio rises appreciably for K and Rb. Hyde &
Andersson's (1989) ideal feldspar does not follow these
trends (Fig. 4). The three polymorphs of KAlSi3O8

display a progressively better Vs/Vp ratio (i.e. a decrease

in polyhedral distortion) with decreasing formation
temperature. For the entire feldspar series, the altered
Si/Al ratios do not appear to in¯uence the con®guration
values substantially (Fig. 4).

When compared to a tricapped trigonal coordination
prism with the maximum global volume, the distortion

Table 2. Geometric characteristics of additional ideal coordination polyhedra

Ideal polyhedron CN Edge length a Height h Inclined edge length l Polyhedral volume Vs/Vp

Archimedean
square pyramid

5 r(2)1/2 r r(2)1/2 (2/3)r3 2� = 6.2832

Square pyramid
with maximum
volume

5 (4/3)r (4/3)r [2(3)1/2/3]r (64/81)r3 1.6875� = 5.3014

Trigonal bipyramid 5 r(3)1/2 (2)r r(2)1/2 (31/2/2)r3 1.5396� = 4.8368
Archimedean

trigonal prism
6 (12/7)1/2r (12/7)1/2r Ð [18/7(7)1/2]r3 [14(7)1/2/27]�

= 4.3099
Trigonal prism with

maximum
volume

6 r(2)1/2 (2/31/2)r Ð r3 (4/3)� = 4.1888

`Split octahedron' 7 a = r(2)1/2; a0 = r r(2)1/2 r(2)1/2 {[4 + 3(2)1/2]/6}r3 3.0491
Pentagonal

bipyramid
7 2rsin36� = 1.1756r (2)r = a 1.5851r3 2.6427

Archimedean
square antiprism

8 [2(2)1/2/(4 + 21/2)1/2]r 2r/[2(2)1/2 + 1]1/2 [2(2)1/2/(4 + 21/2)1/2]r 1.7189r3 2.4369

Square antiprism
with maximum
volume

8 (2/31/2)r (2/31/2)r [2(4 ÿ 21/2)1/2/61/2]r {[16 + 8(2)1/2]/9(3)1/2}r3

= 1.7522r3
{3(3)1/2/[4 + 2(2)1/2]}�

= 2.3906

Hexagonal prism
with maximum
volume

12 (2/3)1/2r [2(3)1/2/3]r Ð 2r3 (2/3)� = 2.0944

Cuboctahedron 12 r r(2)1/2 r [5(2)1/2/3]r [4/5(2)1/2]� = 1.7772

Note: The centre-to-vertex distance r is also the radius of the circumscribed sphere.

Fig. 3. Vs and Vp values for coordination polyhedra CN = 10 of cavity
cations in feldspars together with the value for an idealized feldspar
structure (Hyde & Andersson, 1989). The straight line is the Vs/Vp

ratio calculated from this idealized structure. References for Figs. 3
and 4 are: K-feldspars: sanidine (Scambos et al., 1987), orthoclase
(Colville & Ribbe, 1968) and microcline (Griffen & Johnson, 1984);
Rb-feldspar (Gasperin, 1971), albite NaAlSi3O8 (Armbruster et al.,
1990), anorthite Ca2Al2Si2O8 (Wainwright & Starkey, 1971), high-T
anorthite (Foit & Peacor, 1973), high-p anorthite (Angel, 1988), Eu-
feldspar (Kimata, 1988), Sr-feldspar (Grundy & Ito, 1974),
hyalophane (Ba-K feldspar) (Viswanathan & Kielhorn, 1983) and
celsian Ba2Al2Si2O8 (Newnham & Megaw, 1960).
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percentage for CN = 9 in all feldspars lies between 18.6
and 22.0%. Alternatively, when we understand the
ninefold coordination in feldspars as a deformed cube
with an additional ligand positioned above the midpoint
of the cube edge, we can compare its volume with that of
a regular cube supplemented with such a ninth ligand
positioned at the same centroid±ligand distance as the
other eight ligands. The Vs/Vp ratio for an ideal `cube +
1' con®guration is �3�3�1=2=�4� 61=2��� � 2:53108. The
deviations of Vs/Vp from this value are fairly negligible
for feldspars (below 2% and mostly close to 0). Only for
the idealized model and the Rb-feldspar does this
deviation rise to 4 and 3.6%, respectively. These results
suggest that this unusual coordination polyhedron is
fully justi®ed for the description of feldspar structures.

The departure of the Vs/Vp trend from linearity shows
that the effect of incorporating a large cation into the
aluminosilicate framework is that of straining it towards
its limit of deformability on both ends of the cation-size
spectrum and that it is possible to measure the strain of
the framework in silicates by the Vs/Vr relations and
related con®guration characteristics.

Polyhedral differences between the C2/m and P21/m
forms of ferromagnesian cummingtonite (Fe,Mg)7-

Si8O22(OH)2 (Yang & Smyth, 1996) are summarized in
Table 2. These structures consist of M and T coordina-
tion polyhedra occupied, respectively, by (Fe,Mg) and
Si. When the M4 site is de®ned as six-coordinated, it is a
very distorted octahedron; comparison of seven-coor-

Fig. 4. Polyhedral volume Vp, Vs/Vp ratio, sphericity and cation
eccentricity for CN = 9 for the cavity cations in feldspars of Ca, Na,
Eu, Sr, Ba, K and Rb at ambient conditions, plotted against the
cation crystal radius (Shannon, 1976). For references see Fig. 3.

Table 3. Con®gurational characteristics for coordination polyhedra in FeÿMg cummingtonite

Polyhedron CN Space group
Vr (AÊ 3)
�Vr (high to low) Vs/Vr � (%)

Centroid-to-cation
distance (AÊ ) xFe

M1 6 C2/m 12.125 3.190² 1.52 0.03 0.20
P21/m 12.035 3.191 1.55 0.03 0.20

ÿ0.74%
M2 6 C2/m 11.995 3.174 1.03 0.06 0.09

P21/m 11.918 3.176 1.10 Ð³ 0.09
ÿ0.64%

M3 6 C2/m 11.853 3.212 2.20 0.00 0.17
P21/m 11.837 3.207 2.05 0.02 0.16

ÿ0.13%
M4 6 C2/m 11.610 4.367 28.06 0.37 0.91

P21/m 11.532 4.391 28.45 0.39 0.91
ÿ0.67%

7 C2/m 18.061 3.072§ 0.74 0.56 0.91
P21/m 17.595 3.050 0.04 0.48 0.91

ÿ2.58%}
T1 4 C2/m 2.178 8.162²² 0.00 0.01 Ð
T1A 4 P21/m 2.176 8.169 0.08 0.01 Ð
T1B 4 P21/m 2.185 8.166 0.04 0.02 Ð

average � = 0.23%
T2 4 C2/m 2.187 8.203 0.50 0.04 Ð
T2A 4 P21/m 2.181 8.226 0.78 0.03 Ð
T2B 4 P21/m 2.210 8.208 0.56 0.03 Ð

average � = 0.39%

² For an ideal octahedron this ratio is equal to 3.142. ³ Cannot be calculated due to a misprint in the original publication (Yang & Smyth,
1996). § For an ideal `split octahedron' (CN = 7) this ratio is equal to 3.049 (� is related to this value). } �Vr for CN = 8 is ÿ1.14% (change
from 24.512 to 24.232 AÊ 3; Vs/Vr alters from 2.495 to 2.517). ²² For an ideal tetrahedron this ratio is equal to 8.162.
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dinated M4 with a `split octahedron' gives for M4 about
the same space-®lling ef®ciency as this ideal polyhedron
and only a small distortion percentage.

Comparison of the con®gurational characteristics for
the C2/m and P21/m phases shows that the driving force
of phase transformation on cooling is the volume
reduction (ÿ2.6%) and regularization of the M4 poly-
hedron on the CN = 7 level without a marked shift of the
cation position inside this polyhedron (Table 3). The CN
= 6 and CN = 8 `levels' of the M4 polyhedron, as well as
the M1±M3 octahedra and the T tetrahedra, change
little on transformation, their reduction being in line
with the overall unit-cell volume reduction of 0.62%
between 295 and 140 K.

Analysis of approximately 25 ABX3 compounds
isopointal (Lima-de-Faria et al., 1990) with ilmenite
(Bergerhoff, 1996) reveals that for all non-controversial
cases, which primarily are double oxides, Vs of the
octahedra for each of the smaller cations are rather
constant. The only signi®cant crystal-chemical subdivi-
sion of this series results from plotting the distortion
percentages for the A and B coordination octahedra
against the central atom±centroid distances in them
(Fig. 5).

Two well de®ned groups of isotypes can be discerned:
(i) Ilmenite isotypes, in which Ti is the small B cation

with an appreciably eccentric position in its octahedron.
The B octahedron is less distorted than those of larger,
less eccentric A cations.

(ii) ZnGeO3 isotypes, in which Si4+, Ge4+, Sn4+ or As5+

play the role of the small B cation, which is in the
structure combined with a fairly large A cation. Both the
larger distortion and the larger eccentricity are here
reserved for the octahedra of the larger A cations
(Fig. 5).

ZnTiO3 illustrates a case of questionable structure
determination.

These selected examples show that the global
measure of polyhedral distortion proposed in this paper
is a suitable tool for the con®gurational analysis of a
number of structural families. Both the families based on
simple idealized coordination polyhedra and those with
complex coordinations can be analysed, especially when
the global measure of distortion is combined with other
distortion characteristics.

The authors pro®tted from discussions of these
concepts with a number of crystallographic colleagues,
especially with Dr G. Bergerhoff (Karlsruhe), as well as
from the comments of two anonymous reviewers. The
professional assistance of Mrs Maybritt Handest and
Mrs Britta Munch is gratefully acknowledged.
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